ДАТЧИК РАСХОДА ВОДЫ КОРРЕЛЯЦИОННЫЙ ДРК-3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ИСУН.407453.005 РЭ

СОДЕРЖАНИЕ.

1. Назначение, состав изделия и комплект поставки	4.
2. Технические характеристики	6.
3. Устройство и работа	7.
4. Установка счетчика и подготовка к работе	
4.1. Монтаж АП	
4.2. Монтаж линий связи	
4.3. Подготовка ЭП к работе	
5. Инструкция по эксплуатации	
5.1. Указание мер безопасности	
5.2. Индикация нештатных ситуаций	
6. Инструкция по поверке датчика расхода воды корреляционного	
ДРК-3	18
6.1. Вводная часть	
6.2. Операции поверки	
6.3. Средства поверки	
6.4. Требования безопасности	19.
6.5. Условия поверки	
6.6. Подготовка к проведению поверки	
6.7. Проведение поверки	
6.8. Обработка результатов измерений	
6.9. Оформление результатов поверки	
о.о. Оформиление результатов поверки	∠⊣.
Приложения.	
1. Акустические преобразователи ДРК-ЗАП и их установка	25
2. Структура условного обозначения датчика расхода воды ДРК-3	
 Структура условного обозначения датчика расхода воды дт к-з Габаритно-установочные размеры преобразователя ДРК-3ЭПХХ 	
4. Блок-схема датчика расхода воды корреляционного ДРК-3	
Блок-схема датчика расхода воды корреляционного ди-к-з Блок-схема корреляционного дискриминатора	
6. Блок-схема преобразователя ДРК-3ОП	
7. Протокол измерения размеров установки ДРК-ЗАП	3U. 21
8. Установка преобразователя акустического АП на трубопроводах	ა I. ვე
9. Установка преобразователя акустического Атт на трубопроводах	
10. Схема соединений и подключений датчика ДРК-3	
11. Схема подключения ДРК-3ЭП к компьютеру	
12. Схема подключения индикаторной платы к компьютеру	
13. Схема соединений и подключений датчиков ДРК-3А и ДРК-3Б при	
Bepke	
14. Схема соединений и подключений датчиков ДРК-3В при поверке	
15. Протокол №1 внешнего осмотра счетчика ДРК-3	
16. Протокол №2 результатов поверки счетчика ДРК-3	
17. Диапазоны измеряемых расходов	
18. Светодиодная диагностика работы	42.

Настоящее руководство по эксплуатации предназначено для изучения принципа действия и конструкции датчиков расхода воды корреляционных ультразвуковых ДРК-3 (Датчик ДРК-3), изучения правил монтажа, подготовки к работе, поверки и технического обслуживания в условиях эксплуатации.

1. НАЗНАЧЕНИЕ, СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ.

Датчики ДРК-3 предназначены для измерения объема и расхода воды (питьевой, технической, речной, сточной) в системах мелиорации, канализации, тепло- и водоснабжения в полностью заполненных трубопроводах.

Датчики могут использоваться как в технологических целях, так и для проведения расчетных операций (коммерческого учета).

По согласованию с изготовителем датчики могут использоваться для измерения других сред - растворов солей, кислот, сильнозагрязненных жидкостей.

По виду выдаваемой информации датчики имеют 3 исполнения ${\sf ДPK-3XX}^1$:

ДРК-3А – имеет только импульсный выход; за время между 2-мя импульсами по трубопроводу прокачивается заданный объём жидкости, именуемый ценою импульса;

ДРК-3Б – имеет наряду с импульсным выходом индикатор накопленного объёма, мгновенного расхода и времени наработки;

ДРК-3В – имеет импульсный выход, индикатор накопленного объёма, мгновенного расхода и времени наработки, а также токовый выходной сигнал 0-5 или 4-20 мА и встроенный источник питания, работающий от сети 220 В, 50 Гц. Возможно исполнение ДРК-3В с токовым выходным сигналом без индикатора и с индикатором без токового выходного сигнала.

По диаметру трубопровода, в котором производится измерение, датчики имеют 2 исполнения:

ДРК-3X1 - предназначены для установки на трубопроводах с внутренним диаметром от 80 до 350 мм;

ДРК-3X2 - предназначены для установки на трубопроводах с внутренним диаметром более 300 мм.

Все исполнения датчиков ДРК-3 включают первичный преобразователь ДРК-3ПП. Устанавливаемый на трубопровод ДРК-3ПП, состоит из 4-х акустических преобразователей ДРК-3АП (далее АП, см. прил. 1 рис. 1) и комплекта монтажных деталей, предназначенных для установки АП на действующий трубопровод.

¹ XX характеризуют исполнение (А1, А2, Б1, Б2, В1, В2)

Примечание: По специальному заказу первичный преобразователь может поставляться уже установленным на отрезке трубопровода, диаметр и длина которого оговариваются при заказе (см. прил. 1 рис. 2 и рис. 3).

Датчики ДРК-3АХ и ДРК-3БХ включают в себя соответствующие электронные преобразователи ДРК-3ЭПАХ и ДРК-3ЭПБХ. На крышке ДРК-3ЭПБХ под прозрачным окном установлен индикатор.

Датчики ДРК-3BX включают в себя электронный преобразователь ДРК-3ЭПАХ и оконечный преобразователь ДРК-3ОП, который имеет встроенный источник питания, что делает возможным подключать ДРК-3B непосредственно к сети 220 В 50 Гц. Кроме того ДРК-3ОП имеет индикатор, что обеспечивает считывание информации на значительном расстоянии от места установки электронного преобразователя.

Комплект поставки.

Наименование	Обозначение	Кол.	Примечания
Преобразователь электронный.	ДРК-3ЭПХХ	1	
Преобразователь оконечный.	ДРК-3ОП	1	Только для ДРК-3В
Акустический преобразователь.	ДРК-ЗАП	4	
Штуцер.		4	
Втулка		4	
Труба		4	
Прокладка медная ⊘19		4	
Интерфейсный кабель для под- ключения к компьютеру.		1	
Дискета с программным обеспечением		1	
Паспорт.	ИСУН.407453.005 ПС	1	
Руководство по эксплуатации.	ИСУН.407453.005 РЭ	1	

Пример записи условного обозначения датчика при заказе и в документации другой продукции:

"Датчик расхода воды корреляционный ДРК-3В1 - И – 5 ТУ 4213-007-17805794-00 для трубопроводов <350 мм, с индикатором и выходным сигналом 0-5 мА.»

Структура условного обозначения приведена в прил. 2.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ.

Температура рабочей жидкости	а (25 кгс/см²). до 2,0 сСт. 0 до 4000 мм. ти движения 10 м/с. и движения ленее 150 мм;
Пределы допускаемой относительной погрешности при изм ма и расхода по импульсному сигналу и индикатору	ерении объё-
± 1.5 % при расходах при скорости во±2.0% при друг	их скоростях.
Пределы допускаемой приведенной погрешности при измер по токовому сигналу:	ении расхода
\pm 1.5 % при скорости вод	цы 0,5 − 5 м/с;
±2.0% при друг Пределы допускаемой относительной погрешности измерен наработки	ния времени
Длина прямого участка:	±0,1 /0.
не менее 5 D _у	, до ДРК-ЗАП,
если перед ними расположены круглое колено, полностью с движка или коническое сужение с углом не более 30°;	•
не менее 10 D_y в остальных случаях (по оси трубы перед пе образователем должна быть свободная труба, не имеющая внутрь элементов – датчики температуры, манометры и др.	выступающих
he menee 2	л, О _∨ после АП.
Длина кабелей, соединяющих ДРК-ЗАП с ДРК-ЗЭПХХ, соста входят в состав ДРК-ЗАП.	авляет 3 м и
Расстояние между ДРК-3ЭП и ДРК-3ОП ²	до 300 м.
Температура окружающего воздуха, °C:	10 . 50
для преобразователей ДРК-3АП и ДРК-3ЭПХХдля преобразователей ДРК-3ОП	
Относительная влажность воздуха (при температуре 35 °C) Выходной сигнал:	
импульсный, длительность импульса, мс	не менее 250;
импульсы тока при нагрузке не более 500 Ом, мА	

¹ Допускается кратковременное повышение температуры до **170 °C**.

² При условии, что омическое сопротивление каждого провода не более **5 Ом.**

выход оптопары:
допускаемое напряжение в выходной цепи, В до 30;
допускаемая амплитуда импульсов тока, мА до 100.
Цена импульса, выраженная в M^3 , выбирается из ряда 0.1; 1.0; 10 M^3 1, но
не должна быть меньше величины $1.4 \times 10^{-4} \times Q_{max}$, где Q_{max} – максимально
возможный расход в трубопроводе.
Цена младшего разряда счетчика объёма определяется ценой импульса,
индикация накопленного объема в м ³ .
Разрядность счетчика накопленного объёма десятичных знаков.
Цена младшего разряда счетчика времени наработки, ч 0,01 (36 c).
Время сохранения информации в счетчиках накопленного объёма и вре-
мени наработки при отключенном питаниине менее 10 лет.
Токовый выходной сигнал, пропорциональный расходу:
0 – 5 мА при сопротивлении нагрузки не более 2 кОм
или 4 – 20 мА при сопротивление нагрузки не более 500 Ом.
Защищенность от проникновения пыли и воды
Устойчивость к воздействию вибрации:
для ДРК-3ЭПХХ и ДРК-3ОП
для ДРК-3АПNX.
Напряжение питания: (407, 240) В, 50,41 Б.:
ДРК-3В, переменное(187242) В, 50±1 Гц; ДРК-3А и ДРК-3Б, постоянное стабилизированное (11,515) В.
ДРК-ЗА и ДРК-ЗБ, постоянное стаоилизированное (11,515) Б. Потребляемая мощностьне более 20 ВА.
Потреоляемая мощноствне оолее 20 ва. Масса:
масса. ДРК-ЗАП0,4 кГ;
ДРК-3ЭПХХ
ДРК-30П
Габаритно-установочные размеры:
ДРК-ЗАПРис. 1 прил. 1;
ДРК-3ЭПХХ Рис. 1 прил. 3;
ДРК-3ОП Рис. 2 прил. 3.
<u></u>
3. УСТРОЙСТВО И РАБОТА.
Принцип действия датчиков ДРК-3 основан на корреляционной
дискриминации времени прохождения случайными, например, турбу-
лентными флуктуациями расстояния между двумя парами акустических преобразователей. Это время (время транспортного запаздывания) и яв-
ляется мерой расхода воды, движущейся по трубопроводу. Во время
работы АП, возбуждаемые генераторами ультразвуковой частоты ГУЧ1 и
ГУЧ2 (см. прил. 4), излучают ультразвуковые колебания. Эти колебания,
пройдя через поток жидкости, порождают вторичные электрические ко-
лебания на АП.

¹ Допускается цена импульса в 10 раз меньше и больше указанных.

Из-за взаимодействия встречных ультразвуковых лучей с неоднородностями потока, обусловленными, например, турбулентностью этого потока, электрические колебания на АП оказываются модулированными. Эти колебания поступают на фазовые детекторы (ФД1 и ФД2) и далее на корреляционный дискриминатор КД.

Блок-схема КД приведена в прил. 5.

КД включает в себя:

коррелятор КОР:

микропроцессор МП;

последовательный интерфейс RS-232 для подключения к компьютеру;

блок формирования выходного импульсного сигнала ФВС; энергонезависимая память RAM;

блок индикации, содержащий контроллер индикатора КИ и сам индикатор ИНД.

Сигналы INP1 и INP2 с выходов ФД1 и ФД2 поступают на входы в корреляторе, управляемом МП. В результате корреляционной обработки определяется время транспортного запаздывания, код которого поступает в МП для дальнейшей обработки. МП производит вычисление периода выходных импульсов и их формирование по времени транспортного запаздывания с учетом реального значения внутреннего диаметра трубы и расстояния между АП, которые вводятся с помощью компьютера и хранятся в энергонезависимой памяти RAM. Эти импульсы поступают на выход через оптопару, а также на вход формирователя выходного сигнала ФВС, формирующего импульсы тока. Кроме того выходные импульсы с МП поступают на вход контролера индикатора КИ (только в ДРК-3ЭПБХ), который выполняет следующие функции:

- -суммирует импульсы с учетом их размерности (цены) и определяет накопленный объём нарастающим итогом;
- -по периоду выходных импульсов и их размерности вычисляет мгновенный расход;
 - -определяет время наработки датчика;
- -полученную информацию попеременно (через 5-10 c) выводит на индикатор ИНД.

Выходные импульсы с преобразователя ДРК-3ЭПХХ поступают на устройство их приема для дальнейшей обработки. Таковым может быть тепловычислитель, счетчик-интегратор, а также оконечный преобразователь ДРК-3ОП, входящий в комплект датчика ДРК-3В.

Блок-схема оконечного преобразователя ДРК-3ОП представлена в прил. 6.

ДРК-3ОП включает в себя:

- -устройство приема входного сигнала УГР;
- -контроллер блока индикации КИ;
- -индикатор ИНД;
- -цифро-аналоговый преобразователь ЦАП;
- -блок питания БП.

Питание ДРК-3ОП осуществляется от сети 220 В 50 Гц. БП состоит из 2-х гальванически развязанных источников питания, один из которых предназначен для питания ДРК-3ЭПАХ (11,5...15)В, а второй – для питания схемы ДРК-3ОП.

Импульсный сигнал с электронного преобразователя ДРК-ЗЭПАХ подается на устройство УГР, которое обеспечивает гальваническую развязку входных цепей с источником питания и выходными цепями, и подается далее на вход контроллера КИ, выполняющего те же функции, что и в преобразователе ДРК-ЗБХ. Кроме того КИ формирует двоичный код, характеризующий мгновенный расход, который вводится в ЦАП.

ЦАП формирует выходной сигнал в виде постоянного тока 0-5 или 4-20 мА, пропорциональный мгновенному расходу.

Преобразователи ДРК-3ЭПХХ и ДРК-3ОП выполнены в пласт-массовых корпусах. В корпусе размещена плата с контактными колодками, закрытая фальшпанелью, а на боковой стенке установлены гермовводы для внешних кабелей. В преобразователях ДРК-3ЭПБХ и ДРК-3ОП непосредственно под крышкой размещена плата блока индикации.

Внешние соединения ДРК-3ЭПХХ выполнены с помощью контактных колодок в соответствии с табл. 1.

Таблица 1

			ואונטמו
№ ко-	Nº	Обозначение	Назначение
лодки	кон-		
	такта		
X1	1	Жила	АП1
	2	Экран	
X2	1	Жила	АП2
	2	Экран	
X3	1	Жила	АП3
	2	Экран	
X4	1	Жила	АП4
	2	Экран	
X5	1	Коллектор +	Выход оптопары
	2	Эмиттер -	·
X6	1	Питание Up+	Источник питания +
	2	lout	Выход импульса тока
	3	Питание Up-	Источник питания -
X7	1	EN1	Разрешение измерения
	2	EN2	
XS4	1	MCLR	RESET процессора
	2	GND	
XS7	1	WK/PROG	Выбор режима
	2	GND	«работа/программирование»
		-	

Таблица 1 (продолжение)

			таолица т (продолже
XS6	1	INTEG	Выключение защиты по инте-
	2	GND	гралу корреляционной кривой
XS8	1	WK/TEST	Выбор режима
	2	GND	«работа/тест»
XS9	1	CORR	Отключение сброса
	2	GND	коррелятора
XS10	1	GND	RS-232 для подключения к
	2	RX	компьютеру
	3	TX	
XS11	1	GND	Контроль качества измерения
	2	Синхр.	(диагностика работы преобра-
	3	Корреляция	зователя)
XS14	1	INP1POV	Подключение ИР-ДРК
	2	GND	при поверке
	3	INP2POV	
	4	GND	
	5	OUT	
	6	GND	
XS15	1	TIMOUT	Контроль счетчика времени
	2	GND	наработки

Внешние соединения ДРК-ЗОП выполняются в соответствии с табл. 2.

Таблица 2.

№ ко-	Nº	Обозначение	Назначение
лодки	кон-		
	такта		
X1	1	220 B	Подключение к сети
	2	GND	220 В 50 Гц
	3	220 B	
X2	1	Up+	Источник питания для ДРК-ЭП
	2	Finp	Вход импульса тока
	3	Up -	Источник питания для ДРК-ЭП
X3	1	Fout+	Выход оптопары (коллектор)
	2	Fout -	Выход оптопары (эмиттер)
X4	1	lout +	Выходной ток
	2	lout -	(0-5 или 4-20 mA)
P3	1	ПРМ	Перемычка, задающая режим
	2		работы индикатора
XS5	1	MCLR	RESET процессора
	2	GND	
XS15	1	TIMOUT	Контроль счетчика времени
	2	GND	наработки

Допускается одновременное подключение 2-х приемников сигнала к выходу ДРК-3ЭПХХ по каналу «импульса тока». В этом случае приемники сигнала включаются последовательно, суммарное сопротивление не должно превышать 500 Ом.

Для исключения влияния малого быстродействия прибора при резком нарастании или падении расхода в тех случаях, когда происходят частые включения и выключения насоса (например, на очистных сооружениях) необходимо внешним реле синхронно с выключением насоса замыкать контакты X7:1 и X7:2 на колодке ДРК-3ЭП. Такое замыкание принудительно прекращает счет.

В таком режиме работа прибора происходит так, как если бы насос был включен непрерывно.

4. УСТАНОВКА ДАТЧИКА И ПОДГОТОВКА К РАБОТЕ.

4.1. МОНТАЖ ДРК-ЗАП.

Монтаж ДРК-ЗПП допускается производить на трубопроводах любой ориентации: горизонтальных, вертикальных, наклонных.

Не рекомендуется их расположение на вертикальном трубопроводе с нисходящим потоком жидкости, особенно, если эта жидкость содержит инородные включения.

Не рекомендуется располагать ДРК-ЗАП на трубопроводе, если перед ДРК-ЗАП в этот трубопровод врезан другой с температурой втекающей жидкости, отличающейся от температуры в основном трубопроводе.

На поверхности трубопровода нанести керном метку \mathbf{A}_1 (см. прил. 7). При этом длина прямого участка трубопровода перед этой меткой должна быть равна длине, указанной в п. 2.

Приложить нулевую отметку рулетки (ГОСТ 7502-80) к метке A_1 и с погрешностью не более 1 мм измерить длину окружности трубопровода S_{11} по внешнему диаметру.

Не смещая нулевую отметку рулетки относительно метки A_1 , по отметке этой рулетки равной 0,5 S_{11} нанести на противоположной стороне трубопровода метку B_1 .

На горизонтальных и наклонных трубопроводах ось A_1B_1 должна быть приблизительно горизонтальна. В исключительных случаях (по согласованию с заводом-изготовителем) допускается отклонение от горизонтали на угол до 45 град. На вертикальных трубопроводах расположение оси A_1B_1 произвольно.

Произвести измерения длины окружности еще два раза. Полученные результаты (длины $S_{11},\ S_{12}$ и S_{13}) занести в протокол измерений размеров (прил. 7).

Сверлением или сваркой (желательно сверлением) с центрами в метках A_1 и B_1 сделать отверстия диаметром $36 \div 37$ мм. После этого необходимо произвести механическую обработку внутренней кромки отверстия (сначала напильником, затем наждачной бумагой).

По полученным отверстиям микрометром измерить толщину стенки трубопровода. Измерения проводить по два раза для каждого отверстия. Полученные толщины dA_{11} , dA_{12} , dB_{11} и dB_{12} занести в протокол измерений.

Вычислить внутренний диаметр трубопровода в сечении A_1 - B_1 по формуле: 2

$$D_1 = \frac{S_{11} + S_{12} + S_{13}}{9,425} - \frac{dA_{11} + dA_{12} + dB_{11} + dB_{12}}{2}$$

Полученный результат занести в протокол измерений.

Приложить к центру отверстия в метке A_1 жесткую рейку так, чтобы она плотно прилегала к боковой поверхности трубопровода (это необходимо для того, чтобы датчики в разных сечениях трубопровода находились в плоскости, совпадающей с его осью; допуск на отклонение рейки от оси -3 град.) и нанести на этой рейке метку A_2 на расстоянии $L \approx (0.8 \div 1.2) \bullet D_1$ (но не менее 95 мм.) от центра упомянутого отверстия. Провести те же операции, но для отверстия с центром в метке A_2 и получить метку B_2 .

Повторить вышеперечисленные операции для меток A_2 и B_2 . Занести в протокол значения: S_{21} , S_{22} , S_{23} , dA_{21} , dA_{22} , dB_{21} и dB_{22} .

Вычислить внутренний диаметр трубопровода D_2 в сечении A_2 - B_2 .по формуле:

$$D_2 = \frac{S_{21} + S_{22} + S_{23}}{9,425} - \frac{dA_{21} + dA_{22} + dB_{21} + dB_{22}}{2}$$

Вычислить измеренный внутренний диаметр трубопровода D по формуле:

$$D = \frac{D_1 + D_2}{2}.$$

Результат занести в протокол измерения размеров.

¹ Все измерения следует проводить совместно с представителем региональных органов Госстандарта, чья подпись и печать должна стоять под протоколом измерений.

² Все вычисления здесь и далее проводить с точностью до 4-го значащего знака.

Вычислить величину $b=d+\frac{300}{D_{_{\text{нар}}}}$, где d – толщина стенки, а $D_{_{\text{нар}}}$ – наружный диаметр трубы, выраженный в миллиметрах. Если b превышает 8 мм, то необходимо проточить штуцер, увеличив размер 8 мм до величины $b^{^{+1}}$ мм. Чертеж штуцера приведен на рис. 1 приложения 8. В сделанные отверстия вварить штуцера. Допускается углубле-

В сделанные отверстия вварить штуцера. Допускается углубление штуцера внутрь трубопровода на величину В до 1,5% от D, но не более 5 мм. Пример установки штуцера приведен на рис. 2 приложения 8.

При сварке необходимо соблюсти соосность противоположных штуцеров. Рекомендуется использовать специальный кондуктор для установки ДРК-ЗАП (см. прил. 9). 1

Три раза измерить расстояние между штуцерами с одной стороны - L_{11} , L_{12} , L_{13} и с другой - L_{21} , L_{22} , L_{23} ².

- L₁₁, L₁₂, L₁₃ и с другой - L₂₁, L₂₂, L₂₃
2
.
$$L = \frac{L_{11} + L_{12} + L_{13} + L_{21} + L_{22} + L_{23}}{6}.$$

Результат занести в протокол измерения размеров.

4.1.1. ДОПУСКИ НА УСТАНОВКУ ДАТЧИКОВ.

Разница между D1 и D2 не может превышать 3%. Разница между L1 и L2 не может превышать 3%. Допускается несоосность датчиков, расположенных в разных сечениях до 3 град.

4.2. МОНТАЖ ЛИНИЙ СВЯЗИ.

Монтаж линий связи ДРК-ЗАП с ДРК-ЗЭПХХ проводится в соответствии со схемой соединений (см. прил. 10 рис. 1). Линии связи ДРК-ЗПП и ДРК-ЗЭПХХ входят в комплект поставки.

Если длины кабелей от ДРК-3АП больше необходимой, их следует укоротить, но не сворачивать в бухту.

Недопустима проводка этих кабелей в одном жгуте. Каждый из них должен идти отдельно.

Соединений упомянутых кабелей со штуцером ДРК-ЗАП не рассчитано на большие усилия. Поэтому необходимо принять меры по предотвращению обрыва кабелей. Именно эти обрывы и составляют одну из основных причин отказа прибора.

Монтаж линий связи ДРК-3ЭПХХ и ДРК-3ОП проводится в соответствии со схемой соединений, приведенной в прил. 10 рис. 2.

¹ Чертежи или сам кондуктор могут быть приобретены в ЗАО «Флоукор».

² Измерения производить штангенциркулем с точностью не менее 0,1 мм, если расстояние **L** < **200 мм**. Если **L** ≥ **200мм**, измерение производить рулеткой с точностью не менее **1 мм**.

Соединения между ДРК-3ОП и ДРК-3ЭПХХ могут быть выполнены любыми проводами с омическим сопротивлением каждого не более 5 Ом.

Недопустима установка преобразователей ДРК-3ЭПХХ и ДРК-3ОП вблизи источников тепла.

4.3. ПОДГОТОВКА ПРЕОБРАЗОВАТЕЛЕЙ ДРК-3ЭП И ДРК-3ОП К РАБОТЕ.

При подготовке к работе необходимо ввести в энергонезависимую память преобразователя ДРК-3ЭПХХ значения D и L, указанные в протоколе измерения размеров установки АП или в свидетельстве предприятия-изготовителя (при поставке АП с отрезком трубы), а также значение цены импульса.

Для этого необходимо снять крышку, поставить перемычку XS7, подключить ДРК-ЗЭПХХ к компьютеру в соответствии с прил. 11, вставить в дисковод компьютера дискету, которая поставляется в комплекте датчика ДРК-3, найти файл "obmen.exe" и нажать "ENTER", после чего на экране монитора появляется окно "Конфигурация прибора", в котором имеются следующие позиции:

- диаметр D [мм];
- величина базы L [мм];
- цена импульса, м³, (выбирается из предлагаемых значений);
- длительность выходного импульса;
- ограничение по максимальному расходу, м³/ч
- деление в ФД (для приборов, номер которых меньше 1511 устанавливать в 1; для приборов, начиная с номера 1511 устанавливать в 0);
- коэффициент корреляции (Kk).

С помощью «мыши» и клавиатуры ввести необходимые значения, после чего выбрать «мышью» опцию «Выбор порта» и щелкнуть левой кнопкой.

На мониторе появится окно «Выбор порта», в котором указаны порты COM1, COM2, COM3 и COM4. «Мышью» необходимо выбрать порт, к которому подключен преобразователь ДРК-3ЭПХХ и нажать «мышью» кнопку ОК.

Выбрать «мышью» опцию «Записать» и произвести запись. После успешной записи на мониторе появляется окно «Запись завершена» или сообщение об ошибке, если запись не прошла. Если преобразователь ДРК-ЗЭПХХ неправильно подключен к компьютеру, появляются сообщения «Внешнее устройство не отвечает» или «Ошибка инициализации СОМ порта (занят или отсутствует)».

После ввода исходных данных отключить питание прибора, снять перемычку XS7, отключить кабель, соединяющий прибор и компьютер.

В преобразователях ДРК-3ЭПХБ и ДРК-3ОП необходимо ввести установочные данные в блок индикации. Перед вводом установочных данных необходимо ознакомиться с порядком их ввода, для чего необходимо выполнить следующие действия:

- подключить преобразователь к источнику питания;
- вставить дискету в дисковод компьютера, открыть файл помощи "ind.hlp" и ознакомиться со всеми его разделами;
- выбрать раздел «Подготовка прибора к работе» и подключить в соответствии с ним блок индикации к компьютеру (см. приложение 12);
- выбрать раздел «Работа с программой», где изложен порядок работы с программой.

После прочтения закрыть окно справочной системы и приступить непосредственно к вводу данных (для этого необходимо запустить файл "ind.exe"):

- Цена импульса выбирается такой же, как и в преобразователе ДРК-3ЭПХБ;
- Расход, соответствующий I_{max} (Q_{ном}) расход, при котором выходной ток имеет максимальное значение 5 или 20 мА и который определяет минимальный период следования входных импульсов Т_{ном};
- Величина выходного тока «5» (для 0..5 мA) или «20» (для 4..20 мA).

После того, как параметры выбраны, следует с помощью мыши в окне программы нажать на кнопку «Запись» (или в меню программы выбрать пункт «Запись»); в случае успешной записи появится окно «Запись прошла без ошибок»; в случае ошибки выдается сообщение об ошибке, следует повторить операцию записи.

Ограничение по выбору Q_{ном}:

 $Q_{\text{ном}}$ определяет минимальный период входных импульсов $T_{\text{ном}}$ для блока индикации, который равен:

$$T_{\mbox{\tiny HOM}} = rac{3600 \cdot C}{Q_{\mbox{\tiny HOM}}}$$
 , где C – цена импульса;

$$0.08 c \le T_{_{HOM}} \le 10 c$$

Если это условие не выполняется, необходимо ввести новое значение $\mathsf{Q}_{\scriptscriptstyle{\mathsf{Hom}}}.$

Коэффициент корреляции всегда устанавливается равным 0,15. <u>Примечание</u>: Для приборов, не имеющих токового выходного сигнала, рекомендуется выбирать параметр выходного тока «5».

По окончании установки данных перемычка с XS7 снимается, крышки закрываются. Прибор готов к работе.

5. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ.

5.1. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ.

Датчики относятся к классу защиты 0 по ГОСТ 12.2.007.0-75.

5.2. ПОРЯДОК РАБОТЫ, ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.2.1. После заполнения трубопровода водой и включения питания датчик готов к работе. В специальном обслуживании или настройке прибор не нуждается.
- 5.2.2. На индикаторе ДРК-3Б и ДРК-3В накопленный объем, расход и время наработки индицируются попеременно друг за другом. Время удержания каждого вида информации 6 сек.

Вид индикатора при данной информации приведен ниже:

H | 1 | 2 | 3 | 4 | 5 | 6. | 7 | 8 | - время наработки, час;

Р			1	2	3	4	5	6	- расход, м³/ч;
IJ	1	2	3	4	5	6	7	8	- накоппенный объем м ³ .

Первое знакоместо указывает вид информации. Емкость счетчиков объёма и времени - 8 разрядов.

5.2.3. Объем жидкости, прошедшей через трубопровод за данное время t равен:

- N число импульсов за время t по импульсному выходу;
- С цена импульса по п. 2.13. и п. 2.14.
- 5.2.4. Объем жидкости, перекачанной через трубопровод с момента включения преобразователя равен:

$$V = V_t - V_0$$
, где

- V_{t} показания индикатора в настоящий момент;
- V_0 показания индикатора в момент включения.

5.2.5. Время наработки равно:

$$\dot{T} = T_t - T_0$$
, где

T_t - показания индикатора в настоящий момент;

Т₀- показания индикатора в момент включения.

5.2.6. Значение мгновенного расхода в м³/час указывается на индикаторе ДРК-3Б, ДРК-3В. Этот же расход по токовому выходу в ДРК-3В определяется из формулы:

$$Q = I \bullet \frac{Q_{\text{ном}}}{5}$$
 (для сигнала 0-5 mA);

$$Q = \frac{J-4}{16} \bullet Q_{HOM}$$
 (для сигнала 4-20 mA), где

I - ток на выходе

- Q_{ном} значение расхода по п. 4.3. 5.2.7. Для оценки работы прибора на клеммы XS11 выведены контрольные точки, на которые выведена корреляционная функция. По виду корреляционной функции, которую можно наблюдать с помощью осциллографа, можно судить о качестве работы прибора.
- 5.2.8. На передней панели ДРК-3-ЭП установлены три светодиода (см. приложение 18).

6. ИНСТРУКЦИЯ ПО ПОВЕРКЕ ДАТЧИКА РАСХОДА ВОДЫ КОРРЕЛЯЦИОННОГО ДРК-3.

6.1. ВВОДНАЯ ЧАСТЬ.

Настоящая инструкция распространяется на датчики расхода воды корреляционные **ДРК-3** и устанавливает методику их первичной и периодической поверки.

Назначение, состав, принцип действия и основные технические и метрологические характеристики приведены в руководстве по эксплуатации **ИСУН.407453.005 РЭ**.

Поверка датчиков **ДРК-3** осуществляется с помощью установки имитационной **ИР-ДРК**, **ТУ 4343-003-17805794-95** (Государственный реестр средств измерений №.15192-96).

Первичной поверке подлежат датчики при выпуске из производства или после ремонта. После первичной поверки ДРК-3ЭПХХ должен быть опломбирован.

Периодической поверке подлежат датчики, находящиеся в эксплуатации и подвергнутые ранее первичной поверке, при условии целостности защитных пломб.

При нарушении целостности защитных пломб счетчики, находящиеся в эксплуатации, подвергаются поверке в объеме первичной.

Межповерочный интервал датчиков - 4 года.

6.2. ОПЕРАЦИИ ПОВЕРКИ.

При проведении поверки должны быть выполнены операции, указанные в табл.4.

Таблица 4.

Наименование	Номер пункта	Проведение операции при				
операции	документа по поверке	первичной поверке	периодической поверке			
1. Внешний осмотр	6.7.1.	Да	Да			
2. Определение по- грешности датчика	6.7.2.	Да	Да			

6.3. СРЕДСТВА ПОВЕРКИ.

6.3.1. При проведении поверки должны быть использованы средства измерений и вспомогательное оборудование, перечисленные в табл. 5.

Таблица 5.

Номер пункта до- кумента по поверке	Наименование образцового средства измерений или вспомогательного средства поверки, номер документа, регламентирующего технические требования к средству
6.7.2, 6.7.3	Установка имитационная ИР-ДРК, ТУ 4343-003-1780594-95
6.7.2.	Секундомер СОС пр2б-2, ГОСТ 5072
6.7.2.	Термометр ртутный стеклянный, ГОСТ 27544-87
6.7.2.	Психрометр аспирационный, ТУ 25-08.809-70
6.7.2.	Барометр МД-49-2, ГОСТ 23693-79
6.7.2, 6.7.3	Вольтметр универсальный типа В7-46/1.
6.7.2, 6.7.3	Частотомер Ч3-63/1 ДЛИ. 721.007 ТУ

6.3.2. Все образцовые средства измерения должны иметь действующие свидетельства о поверке или оттиски поверительных клейм, остальные средства измерений должны иметь действующие свидетельства о калибровке.

6.3.3. Допускается применение других средств измерения с аналогичными метрологическими характеристиками.

6.4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ.

При проведении поверки должны быть соблюдены следующие требования безопасности:

- 6.4.1. К проведению поверки допускаются лица, изучившие настоящее **РЭ** и прошедшие инструктаж по технике безопасности.
- 6.4.2. Электроизмерительные приборы и оборудование должны быть надежно заземлены.

6.5. УСЛОВИЯ ПОВЕРКИ.

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха от 1 до 40°C;
- относительная влажность воздуха от 30 до 80%;
- атмосферное давление от 84 до 106,7 кПа;
- напряжение питания от 187 до 242В;
- частота напряжения питания от 49 до 51Гц.

6.6. ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ.

Перед проведением поверки выполнить следующие подготовительные работы:

- 6.6.1. Проверить наличие действующих свидетельств о поверке (калибровке) средств измерений, используемых при поверке датчиков.
- 6.6.2. Соединить ДРК-3ЭПХХ и ИР-ДРК согласно схеме прил. 13 или прил. 14 и выдержать включенными не менее 10 минут.
- 6.6.3. Поверка проводится при установленной в ДРК-3ЭПХХ перемычке XS8.

6.7. ПРОВЕДЕНИЕ ПОВЕРКИ.

6.7.1. Внешний осмотр.

При внешнем осмотре должно быть установлено:

- соответствие комплектности и маркировки датчика требованиям технической документации:
- отсутствие механических повреждений, влияющих на работоспособность датчика.

Результаты внешнего осмотра заносятся в протокол №1 (Приложение 15).

- 6.7.2. Определение погрешности датчика при первичной поверке.
- 6.7.2.1. Определение погрешности датчика проводится при выполнении условий п.п. 6.6.1, 6.6.2.
- 6.7.2.2. Ввести в энергонезависимую память датчика ДРК-3X1 значения D=200; L=200; цену импульса C=0,1 ¹ согласно п.4.3. настоящего технического описания и занести их в протокол №2 результатов поверки (Прил. 16.).

Для датчиков ДРК-3X2 вводятся значения D=500; L=500; цена импульса C =1,0.

6.7.2.3. На переключателе делителя установки имитационной ИР-ДРК установить тумблеры К0, К3, К4, К5, К6 и К7 в положение "1", а тумблеры К1, К2 и «УПР» в положение "0".

¹ Первичная поверка датчика может проводится при других значениях D, L и C. Периодическую поверку необходимо проводить при значениях D, L и C приведенных в паспорте датчика. Исходные данные для поверки при любых значениях D, L и C приведены на дискете, входящей в комплект поставки датчика.

6.7.2.4. На переключателе задержек установки имитационной ИР-ДРК установить тумблеры N0, ..., N11 в соответствии со строкой 1 табл. 6 или табл. 7 в зависимости от исполнения датчика. Выдержать в течение не менее 3-х минут датчик и имитатор в таком состоянии.¹ Снять показания частотомера, регистрирующего период выходных импульсов, расхода с индикатора датчика (для датчиков ДРК-3БХ и ДРК-3ВХ), а также миллиамперметра, измеряющего выходной ток (для датчиков ДРК-3ВХ). Полученные значения занести в протокол №2 результатов поверки.

Датчики ДРК-3X1												Таблица 6		
Q _{р ,} м ³ /ч	N0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	T _p , c	
м³/ч														
1130.9	0	0	0	1	0	1	0	0	0	0	0	0	0.3183	
565.48	0	0	0	0	1	0	1	0	0	0	0	0	0.63661	
376.99	0	0	0	1	1	1	1	0	0	0	0	0	0.95492	
188.49	0	0	0	0	1	1	1	1	0	0	0	0	1.90985	
47.123	0	0	0	0	0	0	1	1	1	1	0	0	7.63943	
11.780	0	0	0	0	0	0	0	0	1	1	1	1	30.5577	

Датчики ДРК-3X2												Табли	ца 7
Q _{р,} м ³ /ч	N0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	T _p , c
м³/ч													
7068.6	0	0	0	1	0	1	0	0	0	0	0	0	0.50929
3534.3	0	0	0	0	1	0	1	0	0	0	0	0	1.01859
2356.2	0	0	0	1	1	1	1	0	0	0	0	0	1.52788
1178.1	0	0	0	0	1	1	1	1	0	0	0	0	3.05577
294.52	0	0	0	0	0	0	1	1	1	1	0	0	12.2230
73.631	0	0	0	0	0	0	0	0	1	1	1	1	48.8923

Провести аналогичные операции для всех остальных значений имитируемого расхода. Полученные значения занести в протокол №2 результатов поверки.

6.7.2.5. В датчиках ДРК-3БХ и ДРК-3ВХ проверить по индикатору приращение объёма, для чего снять крышку с преобразователя ДРК-3БХ или ДРК-3ОП, дождаться, когда индикатор переключится на индикацию накопленного объёма, и снять на плате индикатора перемычку РЗ (маркировка перемычки РЗ нанесена на обратной стороне платы индикатора). Индикатор переходит при этом в режим индикации только накопленного объёма. Установить на переключателе задержек установки ИР-ДРК тумблеры №...№11 в соответствии с третьей строкой табл. 6 или 7 и проверить по индикатору приращение объёма за время Т≥3 мин. Изменение показаний индикатора должно происходить всякий раз при появлении выходного импульса. Результат занести в протокол №2. После проверки перемычку РЗ восстановить.

_

¹ При проведение поверки для значений **D** > **1000 мм**, после установки переключателей задержки необходимо выдержать не менее **10 мин**.

- 6.7.2.6. В датчиках ДРК-3БХ и ДРК-3ВХ проверить погрешность измерения времени наработки, для чего необходимо подключить частотомер в режиме измерения периода к контактам XS15:1 и XS15:2, на которые выводится импульсный сигнал, период которого равен единице младшего разряда счетчика времени (36 с).
 - 6.7.3. Определение погрешности при периодической поверке.
- 6.7.3.1. Регулирующими вентилями остановить движение жидкости в трубопроводе и не сливать её. Провести операции по п.п. 6.7.2.2-6.7.2.6.
- 6.7.3.2. При отсутствии необходимого оборудования для проведения периодической поверки датчик необходимо демонтировать и отправить на предприятие, обладающее необходимым оборудованием и имеющего право на их проведение.

6.8. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

6.8.1. Для всех результатов измерений периода определить погрешность по формуле:

$$\delta \mathsf{T} = \frac{\mathsf{T}_{\mathsf{N}\mathsf{i}} - \mathsf{T}_{\mathsf{P}\mathsf{i}}}{\mathsf{T}_{\mathsf{p}\mathsf{i}}} \bullet 100\%,\tag{5}$$

где Тиі - результат измерения;

Трі - расчетный период.

Величина Трі приведена в табл. 6 и 7

6.8.2. Для всех результатов измерения расхода по индикатору определить погрешность по формуле:

$$\delta Q = \frac{Q_{Ni} - Q_{Pi}}{Q_{Pi}} \bullet 100\% \tag{7}$$

где

Q_{иі} – расход по индикатору;

 Q_{Pi} – расчетный расход.

Величина Q_{Рі} приведена в табл. 6 и 7

6.8.3. Для всех результатов измерения тока определить погрешность по формуле:

$$\gamma I = \frac{I_{\text{NI}} - I_{\text{Pi}}}{I_{\text{max}}} \bullet 100\% \tag{8}$$

где

 I_{vi} - результат измерения;

I_{рі} - расчетный ток

I_{max} = 5 mA - для сигнала 0 – 5 mA

I_{max} = 16 mA - для сигнала 4 – 20 mA

Для сигнала 0 – 5 mA этот ток равен:

$$I_{P_i} = 5 \bullet \frac{Q_{P_i}}{Q_I} \tag{9}$$

Для сигнала 4 – 20 mA:

$$I_{Pi} = 4 + 16 \bullet \frac{Q_{Pi}}{Q_{I}} \tag{10}$$

где $Q_{\rm I}$ – приведенная в паспорте величина расхода, при которой ток достигает максимума.

6.8.4 Для датчиков ДРК-3Б и ДРК-3В при одном значении имитируемого расхода определить погрешность измерения объёма по индикатору по формуле:

$$\delta V = \frac{V_u - V_p}{V_p} \times 100 \tag{11}$$

где V_u – изменение объёма по индикатору;

 $V_p = Q_i \times t/3600 -$ расчетное изменение объёма;

Q_i- имитируемый расход;

t - время, в течении которого произошло изменение показаний индикатора.

6.8.5. Вычислить погрешность измерения времени наработки при контроле времени частотомером по формуле:

$$\delta t = \frac{\tau_p - \tau_u}{\tau_p} \times 100. \tag{12},$$

где

$$\tau_{n} = 36c$$
 - расчетное время

 $\mathcal{T}_{\scriptscriptstyle U}$ - измеренное частотомером время

6.8.6. Результаты поверки признаются положительными, если выполняются условия:

- наибольшая из погрешностей по п.п. 6.8.1, 6.8.2, 6.8.4 не превышает по абсолютной величине 0,5% при измерении объема и 0,5% при измерении расхода по индикатору;
- наибольшая из погрешностей по п. 6.8.3. не превышает по абсолютной величине 0,5%;
- погрешность по п. 6.8.5. не превышает по абсолютной величине 0,1%.

6.9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ.

6.9.1. Положительные результаты поверки оформляются свидетельством о поверке и записью в паспорте результатов и даты поверки (при этом запись должна быть удостоверена клеймом).

При невыполнение условий п.6.8.6 результаты поверки оформляются протоколом №2.

Приложение 1.

Акустические преобразователи ДРК-ЗАП и их установка

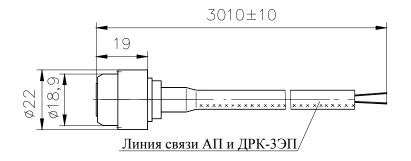
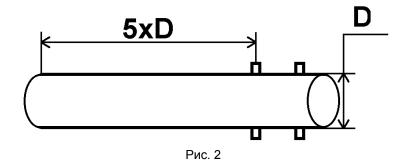



Рис. 1

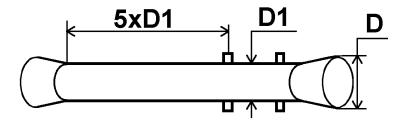


Рис. 3

Структура условного обозначения датчика расхода воды ДРК-3

ДРК-3<u>В2-И-5</u>

A – электронный преобразователь с импульсным выходом;

Б – электронный преобразователь с импульсным выходом и индикатором;

В — электронный преобразователь с импульсным выходом и оконечный преобразователь с источником питания

> 1 — диаметр трубы до 350 мм.

> 2 — диаметр трубы больше 300 мм.

Оконечный преобразователь с токовым выходным сигналом 5 – 0-5 mA 20 – 4-20 mA

(только для ДРК-3В)

Оконечный преобразователь с индикатором

(только для ДРК-3В)

Габаритно-установочные размеры преобразователя ДРК-3ЭПХХ

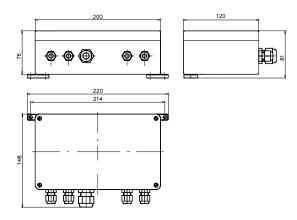


Рис. 1

Габаритно-установочные размеры преобразователя ДРК-3ОП

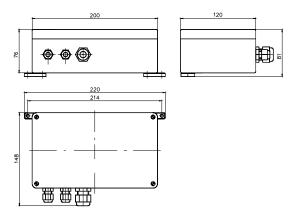
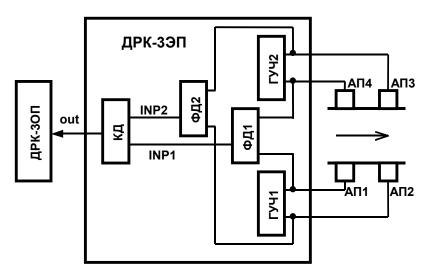
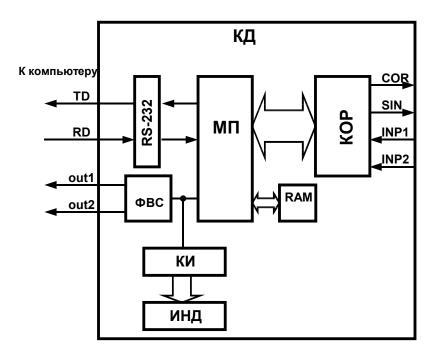
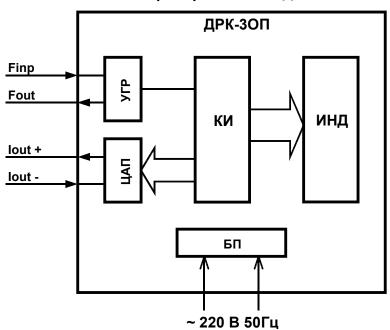



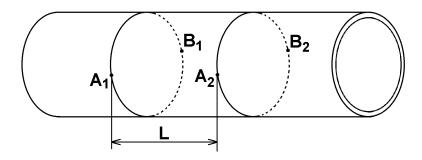
Рис. 2


Приложение 4.

Блок-схема датчика расхода воды корреляционного ДРК-3


Приложение 5.

Блок-схема корреляционного дискриминатора


Приложение 6.

Блок-схема преобразователя ДРК-3ОП

Finp – входной сигнал в виде импульсов тока Fout – выходной сигнал «выход оптопары» lout – выходной ток 0-5 или 4-20 мА

Приложение 7.

Протокол измерения размеров установки ДРК-ЗАП.

	протокол измерения размеров установки дл к-эдл.								
Сечение А ₁ -В ₁		Сечение А2-В2		Расстояние между штуцерами					
S ₁₁		S ₂₁		L ₁₁					
S ₁₂		S ₂₂		L ₁₂					
S ₁₃		S_{23}		L ₁₃					
dA_{11}		dA_{21}		L ₂₁					
dA_{12}		dA_{22}		L ₂₂					
dB_{11}		dB_{21}		L ₂₃					
dB_{12}		dB_{22}							
D_1		D_2							

D	L

	должность, подпись, фамилия, инициалы	
DOTO	-	

Приложение 8.

Штуцер

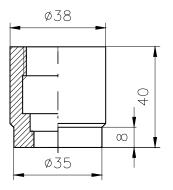


Рис. 1

Установка штуцера

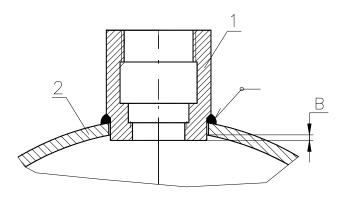



Рис. 2

- 1 Штуцер 2 Трубопровод

Приложение 9.

Установка АП на трубопровод с использованием кондукторов

- 1 Штуцер 2 Кондуктор 3 Трубопровод

Схема соединений и подключений датчика ДРК-3

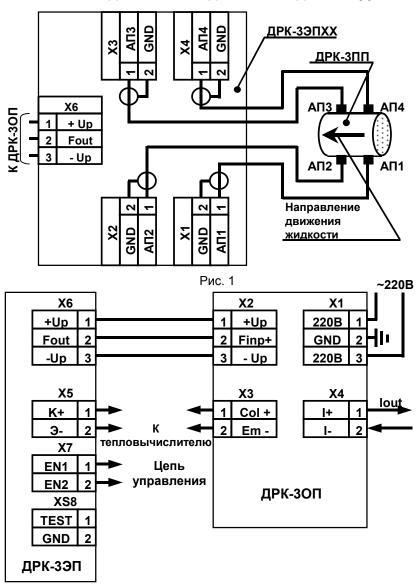


Рис. 2

Приложение 11.

Схема подключения ДРК-3ЭП к компьютеру

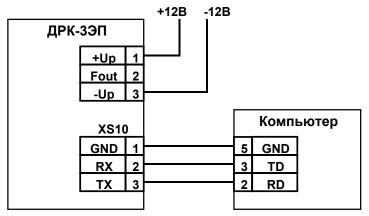


Рис. 1

Кабель выполнен под 9-контактный разъем. Если порт компьютера имеет 25-контактный разъем, то необходим переходник.

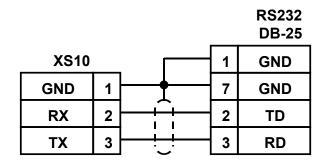


Рис. 2 Распайка 25-ти контактного разъема.

Схема подключения индикаторной платы к компьютеру

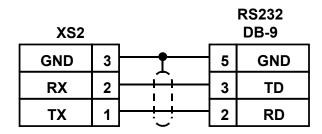


Рис. 1

Кабель выполнен под 9-контактный разъем. Если порт компьютера имеет 25-контактный разъем, то необходим переходник.

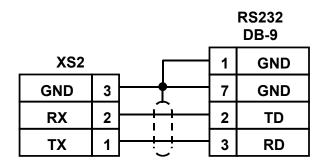
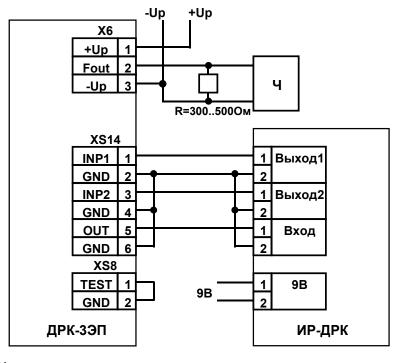
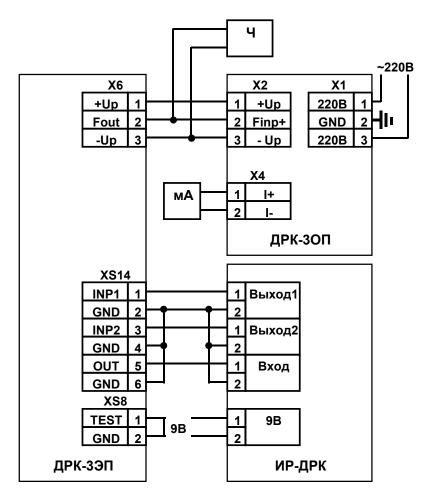



Рис. 2 Распайка 25-ти контактного разъема.


Схема соединений и подключений датчиков ДРК-3A и ДРК-3Б при поверке

Ч – частотомер

Приложение 14.

Схема соединений и подключений датчиков ДРК-3В при поверке

Ч – частотомер мА – миллиамперметр

Прило	эжение	1	5.
-------	--------	---	----

Протокол №1 внешнего осмотра датчика ДРК-3 №_____.

Результаты внешнего осмотра					
•		положительные, отрицательные;			
указать в чем несоответствие требования	TA TOWNSIA OVOY TOW			_	
указать в чем несоответствие треоования	им технической док	ументации и настоящеи и	нструкции		
				_	
Испытание проводил	1	1.			
Пото					
<u>д</u> ата <u></u> .					

Протокол №2 результатов поверки датчика ДРК-3 №_____.

Образцовые средства измерения: имитатор ИР-ДРК №; частотомер № Установочные данные: D =; L =; C =								
Имитируемый	i	Период в	ыходн	юго (сигнала	. C.	Погре	шность,
расход, м ³ /ч		Расчетнь		Измеренный		δ, %		
							•	
Имитируемый 3.	Pacxo	од по ин-	δ_{N} ,	%	I _P , mA	4	Ι _Ν , mA	γ_I , %
расход, м ³ /ч	дикат	ору, м ³ /ч						
Имитируемый	Измо	ренное	Изме	nou	Pacue	TUOO	измене-	δV, %
расход, м ³ /ч					і, ние с	бъем	измене- 1а. м ³ /ч	OV, 70
регенед,	ема	V_{N} , M^{3}	(
П	Проверка счетчика времени наработки.							
Расчетный период, с Изм			змеренный период, с			δ _T , %	,	
						01, 7		
Результаты поверки признаются								
Испытание проводил/.								
							Дата	

Приложение 17.

Диапазоны измеряемых расходов.

D _{внутр} , мм	V _{min} , м ³ /ч	V _{max} , м ³ /ч	D _{внутр} , мм	V _{min} , м ³ /ч	V _{max} , м ³ /ч
80	2.7	181	600	102	10200
100	4.2	283	800	181	18100
150	6.4	636	1000	283	28300
200	11.3	1130	1200	407	40700
250	17.7	1770	1600	724	72400
300	25.4	2540	2000	1130	113000
400	45.2	4520	2400	1630	163000
500	70.7	7070	4000	4520	452000

В таблице приведены диапазоны измерения только для некоторых диаметров трубопроводов. Для определения минимального и максимального расходов для конкретного трубопровода необходимо воспользоваться одной из следующих формул:

- для
$$80 \le D_{\text{внутр}} < 150$$
 $V_{\min} = 4,24*10^{-4}*D_{\textit{внутр}}^2$; - для $D_{\text{внутр}} \ge 150$ $V_{\min} = 2,83*10^{-4}*D_{\textit{внутр}}^2$ - для любого $D_{\text{внутр}}$ $V_{\max} = 2,83*10^{-2}*D_{\textit{внутр}}^2$

В приведенных формулах и в таблице:

- D_{внутр} внутренний диаметр трубопровода, мм;
- V_{min} минимальный измеряемый расход, м³/ч; V_{max} максимальный измеряемый расход, м³/ч;

Приложение 18.

Светодиодная диагностика работы

№ п/п	Состояние диагностических	Типовые состояния	Предпринимаемые действия
1	рвемидае образоров П — не горит П — горит зеленым цветом	Нормальная работа прибора	Acres sur
2	II – горит красным цветом	отсутствует корреляция: - расход вышел за пре- делы измеряемой скорости потока (0,1-10 м/с)	- изменить расход
		- в потоке имеется нерастворимый воздух - перед измерительным участком имеется слияние потоков с разной температурой - длины прямых участков не соответствуют требованиям РЭ	- увеличить давление в магистрали - выбрать другой участок для установки ДРК - установить в соответствии с требованиями РЭ
	II – горит зеленым цветом	защита по интегралу: - прибор выполняет из- мерения, но имеются факторы, влияющие на построение корреляци- онной зависимости	- отключить защиту по интегралу (установить перемычку на разъем XS6)
	II – горит желтым цве- том	сработали обе защиты (защита по корреляции и интегралу)	
3	III – горит красным или желтым цветом	Расход в трубопроводе ниже нижнего предела	Увеличить расход или скорость потока
4	II и III светодиоды периодически мигают	Неправильно запрограм- мировано исполнение прибора	Приборы 1-го исполнения должны быть запрограммированы на Ду 80-350 мм, приборы 2-го исполнения на Ду 300-4000 мм