ТЕРМОАНЕМОМЕТР КРЫЛЬЧАТЫЙ ЦИФРОВОЙ DT-8894

Руководство по эксплуатации v. 2015-02-24 AMV-MIT-DVB

Термоанемометр DT-8894 предназначен для измерения скорости, объемного расхода и температуры воздушного потока.

Модель имеет встроенный пирометр и может осуществлять регистрацию значений измеряемых параметров на ПК (по USB).

особенности

- Измерение скорости, объемного расхода и температуры воздушного потока.
- Определение максимальных/минимальных значений, а также разницы между ними.
- Определение среднего по 20 замерам.
- Запоминание до 8 значений площади поперечного сечения воздуховода.
- Двойной (3¹/₂- и 4-разрядный) ЖК-дисплей с подсветкой.
- Удержание показаний на дисплее (HOLD).
- Автоматическое выключение с возможностью его блокировки.
- Индикация разряда батареи.
- Встроенный пирометр с лазерным указателем центра области измерения температуры.
- Регистрация показаний прибора на ПК (по USB); аналитическое ПО (поставляется в комплекте).

ЭЛЕМЕНТЫ ПРИБОРА

- 1. Разъем для подключения измерительного щупа (на верхней панели).
- 2. Дисплей для отображения результатов измерения.
- 3. Кнопка **MAX/MIN** (верхняя) вкл./выкл. режима определения макс./мин. значений температуры потока.
- 4. Кнопка 🔅 вкл./выкл. подсветки.
- 5. Кнопка **HOLD** (верхняя) вкл./выкл. удержания значения температуры потока на дисплее.
- 6. Кнопка AVG вкл./выкл. режима определения среднего значения.
- 7. Кнопка UNITS/▲ выбор единиц измерения; увеличение значения площади поперечного сечения воздуховода при ее задании.
- 8. Кнопка MAX/MIN/ <->

 – вкл./выкл. режима определения макс./мин./разностн. знач. скорости/расхода/темпер. (пирометр); перемещение десятичной точки при задании площади поперечного сечения воздуховода.
- Кнопка HOLD/▶ вкл./выкл. удержания значения скорости/расхода/температуры (пирометр) на дисплее; выбор активного разряда при задании площади поперечного сечения воздуховода.
- 10. Кнопка **AREA/NEXT** задание площади поперечного сечения; выбор активной ячейки памяти (хранящей значение площади).
- 11. Кнопка 🔱 вкл./выкл. прибора.
- 12. Отсек питания (на задней панели).
- 13. Крыльчатка.
- 14. Кнопка IRT измерение температуры пирометром.
- 15. Пирометр с лазерным целеуказателем (на верхней панели).
- 16. USB-разъем (на боковой панели) для подключения к ПК.

- 1. Индикатор разряда батареи.
- 2. Режим определения макс./мин. значений температуры потока.
- 3. Определение максимального значения температуры потока.
- 4. Определение минимального значения температуры потока.
- 5. Удержание значения температуры потока на дисплее.
- 6. Взаимодействие с ПК (соединение по USB).
- 7. Единицы измерения температуры потока.
- 8. Дополнительный индикатор измеренное значен. температуры потока.
- 9. Режим измерения скорости потока.
- 10. Режим измерения объемного расхода потока.
- 11. Режим измерения температуры пирометром.
- 12. Задание площади поперечного сечения воздуховода.
- 13. Основной индикатор измеренное значение скорости/расхода потока/температуры (пир.).
- 14. Единицы измерения скорости/расхода потока/температуры (пир.).
- 15. Режим определения макс./мин. значений скорости/расхода потока/температуры (пирометра).
- 16. Определение макс. значения скорости/расхода/температуры (пир.).
- 17. Определение мин. значения скорости/расхода/температуры (пир.).
- 18. Удержание значения скорости/расхода/темпер. (пир.) на дисплее.
- 19. Определение среднего (по нескольким замерам)/разности между макс. и мин. значениями скорости/расхода/температуры (пир.).
- 20. Множитель для значения объемного расхода потока.

ПОРЯДОК РАБОТЫ

1. Подготовка к работе

1.1. Установите батарею в отсек питания, соблюдая полярность. При появлении на дисплее индикатора 🛋 батарею следует заменить.

1.2. Подключите измерительный щуп, используя специальный разъем в верхней части прибора.

2. Измерение скорости или расхода воздушного потока

2.1. Для включения или выключения прибора нажмите кнопку U.

2.2. На основном индикаторе отображается измеренное значение скорости или расхода, на дополнительном – температуры воздушного потока. В режиме пирометра на основном индикаторе отображается значение температуры, измеренное пирометром.

2.3. Для задания режима измерения скорости (VEL)/расхода (FLOW) и единиц измерения нажмите кнопку UNITS необходимое число раз.

2.4. Для переключения между единицами измерения температуры (°С и °F) нажмите и удерживайте кнопку UNITS нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал).

2.5. Поместите датчик в воздушный поток так, чтобы направление потока соответствовало направлению стрелки, указанной на внутренней части датчика. Значения параметров на дисплее прибора будут обновляться.

2.6. Для фиксации на дисплее измеренного значения скорости/расхода/температуры, измеренной пирометром, нажмите кнопку **HOLD/**▶, температуры потока – кнопку **HOLD** (верхнюю). Для возврата к режиму измерения параметров нажмите ту же кнопку повторно.

2.7. Для включения/выключения подсветки дисплея нажмите и удерживайте кнопку 👾 нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал).

3. Определение максимальных/минимальных значений

3.1. Для определения макс./мин./разности между макс. и мин. значениями скорости, расхода или температуры, измеренной пирометром, нажмите кнопку МАХ/МІN/◀ необходимое число раз.

3.2. Для определения макс./мин. значений температуры потока нажмите кнопку **MAX/MIN** (верхнюю) необходимое число раз.

3.3. Для выхода из режима нажмите и удерживайте ту же кнопку нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал).

4. Определение среднего значения по 1...20 точкам

4.1. Для активации режима нажмите и удерживайте кнопку AVG нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал). В верхнем правом углу дисплея появится число «0», обозначающее номер активной ячейки памяти. Всего доступно 20 ячеек памяти.

4.2. Для занесения значения скорости потока во встроенную память нажмите кнопку **AVG**. Номер активной ячейки памяти увеличится на 1. На дисплее в течение 2...3 секунд будет отображаться среднее значение по всем предыдущим замерам.

4.3. Для выхода из режима нажмите и удерживайте кнопку AVG нажа-

той в течение 1...2 секунд (раздается двойной звуковой сигнал и произойдет очистка памяти).

5. Задание площади поперечного сечения воздуховода

5.1. Задайте режим измерения расхода воздушного потока (FLOW) при помощи кнопки UNITS (см. п. 2.3).

5.2. Нажмите и удерживайте кнопку **AREA** нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал). На дисплее отобразится текущее значение площади поперечного сечения воздуховода.

5.3. Для увеличения значения активного (мерцающего) разряда на 1 нажмите кнопку ▲.

5.4. Для выбора активного разряда используйте кнопку ►.

5.5. Для смещения десятичной точки на одну позицию влево нажмите кнопку ◀.

5.6. Для перехода к следующей ячейке памяти нажмите кнопку **NEXT**. Всего доступно 8 ячеек памяти для хранения значений площади.

5.7. Для выхода (с сохранением) из режима задания площади нажмите и удерживайте кнопку **AREA** нажатой в течение 1...2 секунд (раздастся двойной звуковой сигнал). При определении расхода потока будет использоваться значение площади, хранящееся в активной (на момент выхода) ячейке.

6. Автоматическое выключение

6.1. Прибор автоматически выключается через 15 минут работы.

6.2. Для принудительного выключения прибора нажмите кнопку U.

6.3. Для блокировки функции автовыключения нажмите и удерживайте кнопку 说: нажатой в момент включения прибора (也).

6.4. Активация режимов измерения расхода (FLOW) и среднего (AVG) значения блокирует функцию автовыключения; для восстановления функции автовыключения дезактивируйте данные режимы.

7. Измерение температуры при помощи пирометра

7.1. Для бесконтактного измерения температуры нажмите и удерживайте кнопку **IRT** нажатой, после чего наведите лазерный указатель пирометра, находящегося в верхней части прибора, на объект. Кнопку необходимо удерживать нажатой на всем протяжении измерения.

7.2. В процессе измерения доступна функции определения макс./мин. (см. пункты 3.1 и 3.3) и удержания показаний (см. пункт 2.6).

7.3. Для выхода из режима отпустите удерживаемую кнопку **IRT**. Выход осуществится автоматически по прошествии 3...5 секунд. Примечание: активация функции удержания показаний блокирует автовыход; нажмите кнопку **HOLD** (нижнюю) для выхода.

подключение к пк

1. Установка программного обеспечения на компьютер

1.1. Вставьте диск с ПО в привод (диск поставляется в комплекте). Примечание: вы также можете скачать данную программу с сайта ark5.ru из раздела «Поддержка/Программное обеспечение».

1.2. Запустите файл Setup.exe, находящийся в корне диска.

1.3. Осуществите установку, следуя подсказкам на экране.

2. Подключение прибора и установка драйверов

2.1. Подключите прибор к ПК, используя USB-разъем.

2.2. Включите прибор при помощи кнопки 🖰 (см. Порядок работы п. 2.1.).

2.3. При первом подключении Windows предложит установить 2 драйвера, необходимых для работы (запустится Мастер нового оборудования).

2.4. В первом окне выберите пункт «Установка из указанного места». Нажмите кнопку «Далее».

2.5. В появившемся окне выберите пункт «Выполнить поиск наиболее подходящего драйвера в указанных местах», поставьте галочку напротив пункта «Включить следующее место поиска» и укажите путь: <буква привода>:\CP2101WIN\. Нажмите кнопку «Далее».

2.6. Программа закончит свою работу. Нажмите кнопку «Готово».

2.7. На экране снова появится Мастер нового оборудования. Повторите процедуру, описанную в п. 4.1–4.3.

3. Запуск программы и проверка установки соединения

3.1. Запустите программу DT8894, используя ярлык на рабочем столе.

3.2. В левой части основного окна программы расположен макет прибора, с которым можно работать при помощи мыши.

3.3. Информация на дисплее макета должна соответствовать информации на дисплее прибора.

3.4. Если на дисплее макета отображается надпись «Offline», проверьте подключение прибора к ПК.

3.5. Если это не помогло, то следует поменять COM-port в меню COM Port.

3.6. После смены порта подождите несколько секунд до установки соединения.

4. Работа с программой

4.1. После установки связи для начала регистрации показаний прибора выберите пункт Run в меню RealTime или нажмите кнопку ► на панели инструментов.

4.2. В появившемся окне задайте интервал записи в сек. Нажмите «ОК».

4.3. В правой части окна расположено поле для построения графика; в верхней части окна расположены элементы управления (масштаб и др).

4.4. После задания интервала записи начнется построение графика.

4.5. Для задания уставок и выяснения текущего состояния сигнализации используйте меню в нижней части окна программы. Уставки задаются в соответствующих полях при помощи стрелок. При срабатывании сигнализации соседний квадратик начнет мерцать красным цветом.

Скорость воздушного потока				
Единицы измерения	Диапазон	Разрешение	Точность	
m/s (м/c)	0,4030,00	0,01	±3% ± 0,20 м/с	
km/h (км/ч)	1,4108,0	0,1	±3% ± 0,8 км/ч	
ft/min (фут/мин)	805900	1	±3% ± 40 фут/мин	
mph (мили/ч)	0,967,0	0,1	±3% ± 0,4 мили/ч	
knots (узлы)	0,858,0	0,1	±3% ± 0,4 узла	
Объемный расход воздушного потока				
Единицы измерения	Диапазон	Разрешение	Площадь попереч- ного сечения	
СММ (м ³ /мин)	0 999900	0.001	$0.999.9 \text{ m}^2$	
СFM (фут ³ /мин)	0999900	0.001	0999.9 фут ²	
Температура возлушного потока				
Единицы измерения	Диапазон	Разрешение	Точность	
°C	-1060	0,1	±2°C	
Температура, измеряемая пирометром				
Единицы измерения	Диапазон	Разрешение	Точность	
00	-5020	0,1	±5°C	
C	-20500	0,1	$\pm 2\% \pm 2^{\circ}C$	
Оптическое разрешение пирометра		30:1		
	Общи	ie		
Тип датчика температуры потока		NTС-термистор		
Период опроса датчиков, с		1		
Питание		Батарея 9 В типа «Крона»		
Потребляемый ток, мА		=8,3		
Время непрерывной работы, ч		80		
Условия эксплуатации		050°C, ≤80%RH		
Условия хранения		-1060°C, ≤80%RH		
Габаритные размеры, мм	Блок управления	200×75×48		
	Щуп	173×75×38		
Диаметр крыльчатки, мм		70		
Длина провода, мм		120		
Вес (включая батарею и щуп), г		347		

комплектация

Наименование	Количество
1. Прибор	1 шт.
 Батарея = 9 В 	1 шт.
3. Руководство по эксплуатации	1 шт.
4. Кейс	1 шт.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок составляет 12 месяцев от даты продажи. Поставщик не несет никакой ответственности за ущерб, связанный с повреждением изделия при транспортировке, в результате некорректного использования, а также в связи с модификацией или самостоятельным ремонтом изделия пользователем.

195265, г. Санкт-Петербург, а/я 70 Тел./факс: (812) 327-32-74 Интернет-магазин: ark5.ru

Дата продажи:

М. П.

ТЕРМОАНЕМОМЕТР С ИЗМЕРЕНИЕМ ОБЪЕМНОГО РАСХОДА ВОЗДУХА АV9201

Параметр	AV9201	
Скорость потока, м/с	$045 \pm 2\%$	
Температура, °С	$-50+70 \pm 0.5^{\circ}C$	
Температура (пирометр), °С	_	
Оптическое разрешение	_	
Объемный расход	09999 м³/мин,	
	площадь сечения воздуховода: 0,09,999 м ²	
Max/min, среднее	\checkmark	
Размеры, мм	175×85×39	
Вес, г	192	

8