ООО «АВТОМАТИКА»

ОКП 42 1000 ТУ 4210-010-79718634-2010

СПРУТ T-02-RS485

преобразователь параметров окружающей среды

Паспорт Руководство пользователя версия 1.8 от 28.02.2012

Санкт-Петербург 2012 г.

Содержание

Назначение	4
Устройство	4
Технические данные и характеристики	5
Эксплуатация	6
Цифровой интерфейс RS-485	7
Описание регистров протокола Modbus-RTU	9
Восстановление настроек прибора	12
Схема подключения датчика	14
Условия эксплуатации	14
Комплектность	15
Правила транспортирования и хранения	15
Гарантии изготовителя	15
Форма заказа	15
Свидетельство о приемке	16
Обратная связь	16
	Назначение

1 Назначение

Универсальный преобразователь параметров окружающей среды СПРУТ-Т-02-RS485 (далее преобразователь) предназначен для непрерывного измерения сигнала от датчика температуры и передачи измеренного значения по интерфейсу RS-485.

В качестве датчика температуры может применяться термопреобразователь сопротивления, как с медным, так и с платиновым или никелевым чувствительным элементом.

Преобразователь сконструирован так, чтобы обеспечить лёгкость присоединения к головке термодатчика с сохранением герметичности изделия на уровне IP65.

2 Устройство

Преобразователь выполнен в герметичном алюминиевом нержавеющем металлическом корпусе цилиндрической формы с присоединительным штуцером (M20x1,5) с одной стороны и герметичным соединителем стандарта DIN43650 с другой (см. рисунок 2.1).

Со стороны штуцера выведены подготовленные провода для присоединения датчика температуры (см. рис. 9.1).

Для удобства завинчивания преобразователя в головку датчика предусмотрены лыски под гаечный ключ на 22 мм.

Клеммный соединитель используется как для подачи напряжения питания, так и для связи с прибором по интерфейсу RS-485 (см. рис. 3.1).

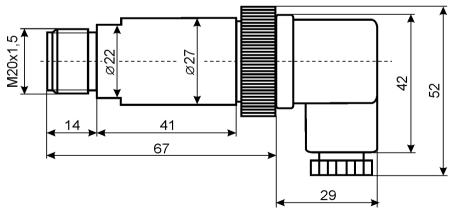


Рис. 2.1 Измеритель-преобразователь СПРУТ (общий вид)

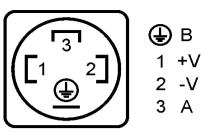


Рис. 3.1 Разъемный соединитель преобразователя СПРУТ

3 Технические данные и характеристики

Преобразователь выпускается по ТУ 4210-010-79718634-2010. Технические данные представлены в таблицах (3.1–3.2).

Таблица 3.1 Общие характеристики

Параметр	Значение		
Степень защиты	IP65		
Напряжение питания	=(12-26) B		
Нагрузочная способность выхода RS-485	До 32 параллельно подключён ных устройств		
Потребляемая мощность	≤ 1 BA		
Габаритные размеры, мм	Ø27, L=107		
Масса, кг	≤ 0,12		
Монтаж	к датчику: штуцер M20x1,5		

Таблица 3.2 Параметры измерительного канала типа ТС1

Nº	Тип датчика	Диапазон измерений D, oC	Разреш щаяспо ность и рителы канал	соб- зме- ного	Точность
1	50M W100 =1,428	-200-0-200	0,0216	°C	0,25 %
2	100M W100 =1,428	-200-0-200	0,0108		
3	53M-гр.23 W100 =1,426	-50-0-180	0,0197		
4	Cu50 W100 =1,426	-50-0-200	0,0209		

5	Cu100 W100 =1,426		0,0104		
6	46П-гр.21 W100 =1,391	-200-0-500	0,0285		
7	50П W100 =1,391	200 0 500	0,0262		
8	100Π W100 =1,391	-200-0-500	0,0131		
9	Pt50 W100 =1,385	-200-0-500	0,0266		
10	Pt100 W100 =1,385	-200-0-500	0,0133		
11	100H W100 =1,617	-60-0-180	0,0093		
12	R 0-285 Ом	0-285 Ом	0,0044	Ом	

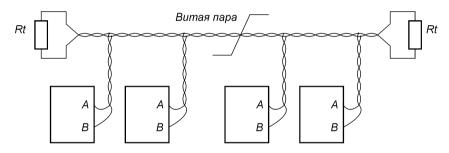
Таблица 3.3 Параметры измерительного канала типа ТС2

Nº	Тип датчик	Диапазон измерений D, оС	Разреш щая спо ность и рителы канал	соб- зме- ного	Точность
1	Pt500 W100 =1,385	-200-0-850	0,04		
2	Pt1000 W100 =1,385	-200-0-030	0,02	°C	0,25 %
3	500Π W100 =1,391	-200-0-850	0,04		0,25 /6
4	1000∏ W100 =1,391	-200-0-830	0,02		
5	R 0-320Ом	0-320 Ом	·		
6	R 0-1000Ом	0-1000 Ом	0,06	Ом	0,25 %
7	R 0-3.9кОм	0-3900 Ом			

4 Эксплуатация

Перед включением прибора, необходимо убедиться в правильности подключения прибора и внешнего оборудования.

После первого включения потребуется настроить преобразователь под требуемую конфигурацию датчика температуры. Так как прибор не имеет никаких органов управления и индикации, то вся настройка прибора осуществляется по


интерфейсу RS-485. Это может быть выполнено либо в любой SCADA-системе с использованием ОРС-сервера, либо в программе-конфигураторе, либо через любую другую программу, способную формировать стандартные Modbus-запросы. Описания параметров и справочная информация, необходимая для доступа к параметрам прибора, приведена в разделе 6.

Программу-конфигуратор и OPC-сервер можно найти на нашем интернет-сайте <u>www.automatix.ru</u> или на сайте интернет-магазина APK «Энергосервис» <u>www.kipspb.ru</u>.

5 Цифровой интерфейс RS-485

Цифровой интерфейс RS-485 обеспечивает соединение прибора (или сети приборов в количестве до 247 штук) с управляющей ЭВМ.

Физически, интерфейс RS-485 является дифференциальным, обеспечивает многоточечные соединения и позволяет передавать и принимать данные в обоих направлениях (см. рис. 5.1).

Puc. 5.1 Структура сети RS-485

Сеть, построенная на базе интерфейса RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары двух скрученных проводов. В основе интерфейса RS-485 лежит дифференциальной передачи сигнала. Суть принцип заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно А) идет оригинальный сигнал, а по другому (условно В) - его инверсная копия (будьте внимательны и соблюдайте полярность подключения!). Таким образом, между двумя проводами витой пары всегда есть разность потенциалов. Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Максимальная скорость связи прибора по интерфейсу RS-

485 может достигать 921.6 кбод. Максимальное расстояние - 1200 метров. Если необходимо организовать связь на расстоянии более чем 1200 метров или подключить больше устройств, чем допускает нагрузочная способность передатчика - применяют специальные повторители (репитеры). Нагрузочная способность передатчика данного прибора позволяет подключиться к сети с не более чем 32-мя устройствами.

При значительных расстояниях между устройствами. связанными по витой паре и высоких скоростях передачи начинают так называемые эффекты длинных Электромагнитный сигнал имеет свойство отражаться от открытых концов линии передачи и ее ответвлений. Фронт отразившийся в конце линии и вернувшийся обратно, может исказить текущий или следующий сигнал. В таких случаях нужно подавлять эффект отражения. Существует стандартное решение этой проблемы. У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля и не зависит от его длины. Для обычно применяемых в линиях связи витых пар волновое сопротивление составляет Zв=120 Ом. Если на удаленном конце линии, между проводниками витой пары включить резистор с номинальным омическим сопротивлением равным волновому сопротивлению электромагнитная волна дошедшая ДО «тупика» TO Отсюда его поглощается на таком резисторе. названия согласующий резистор или «терминатор».

Для коротких линий (несколько десятков метров) и низких скоростей (меньше 38400 бод) согласование можно вообще не делать.

необходимость Эффект отражения И правильного согласования накладывают ограничения на конфигурацию линии связи. Линия связи должна представлять собой один кабель витой К этому кабелю присоединяются все приемники передатчики. Расстояние от линии до микросхем интерфейса RS-485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения. В оба наиболее удаленных конца кабеля включают соответствующие согласующие резисторы Rt по 120 Ом (0.25 Вт). Если в системе только один передатчик, и он находится в конце линии, то достаточно одного согласующего резистора на противоположном конце линии.

Логически в сети RS-485 обмен данными реализован посредством транспортного протокола Modbus-RTU, что де-факто является стандартом в сетях диспетчерского управления и сбора данных (SCADA системах). Протокол Modbus обеспечивает

6 Описание регистров протокола Modbus-RTU

Примечание: Нумерация всех адресов приведена с нуля. Это отмечается отдельно, потому что некоторые программные пакеты могут автоматически «корректировать» вводимые пользователем адреса, добавляя или вычитая базовый адрес (для регистров хранения, например, 40001) или принимать адрес, начинающийся с единицы. В протоколе адресация принята с нуля.

Таблица 6.1 Регистры флагов (Modbus функции 0x01 и 0x05)

Адрес	Описание
9	Перезапуск прибора. Установка в единицу вызывает перезапуск прибора.
16	Оставить настройки интерфейса по умолчанию. Установка флага в течении первой секунды работы прибора после включения питания блокирует пользовательские настройки интерфейса (скорость, биты данных, стоп-биты и биты чётности) до выключения питания прибора. Пользовательские настройки в приборе при этом не изменяются. См. п. 7.

Таблица 6.2 Дискретные регистры ввода (Modbus функция 0x02)

Адрес	Описание		
0	Обрыв датчика. Если этот регистр ввода установлен в единицу, проверьте, правильно ли подключён датчик.		
1	Выход измеренного значения температуры за нижнюю границу диапазона работы датчика. Если этот регистр ввода установлен в единицу, проверьте, правильно ли выбран тип используемого датчика.		
2	Выход измеренного значения температуры за верхнюю границу диапазона работы датчика. Если этот регистр ввода установлен в единицу, проверьте, правильно ли выбран тип используемого датчика.		
3	Ошибка связи с АЦП. Если этот регистр ввода постоянно установлен в единицу, то прибор требует ремонта.		

Основные параметры, определяющие работу, прибора находятся в регистрах хранения. В таблице 6.3 приведено описание параметров прибора, а в таблице 6.4 информация, необходимая для формирования соответствующих Modbus запросов для доступа

к этим параметрам.

Таблица 6.3 Описание параметров в регистрах хранения

Параметр	Описание
Тип датчика	Данный параметр определяет тип подключенного к прибору термосопротивления. Подробное описание датчиков представлены в таблице 3.2.
	Допустимые значения параметра для модификации TC1: 0 — 50M 1 — 100M 2 — 53M-гр.23 3 — Cu50 4 — Cu100 5 — 46П-гр.21 6 — 50П 7 — 100П 8 — Pt50 9 — Pt100 10 — 100H 11 — R 0-285 Ом (резистор)
	Для модификации TC2: 0 — Pt500 1 — Pt1000 2 — 500П 3 — 1000П 4 — R 0-320 Ом (резистор) 5 — R 0-1000 Ом (резистор) 6 — R 0-3900 Ом (резистор)
Коррекция измеренного значения. Усиление	Значение по умолчанию: 0 Коррекция измеренных значений позволяет добиться от прибора высокой точности показаний. Функцию коррекции можно также использовать для подключения нестандартных типов датчиков. К примеру, Вы хотите подключить платиновое сопротивление производства Honeywell Pt1000 W100=1.375. Выбираем ближайший тип датчика — это Pt1000 W100=1.385. Видно, что при 0°C оба датчика имеют одинаковое сопротивление, а при

	100°С датчик Honeywell имеет меньшее сопротивление, следовательно, необходимо внести коррекцию на усиление, а коррекция смещения не требуется. Поэтому параметр «Усиление» 385/375=1,027, а параметр «Смещение» равен 0. Допустимые значения: от -9999 до 9999. Значение по умолчанию: 1.0 (нет коррекции)
Коррекция измеренного значения. Смещение	см. описание параметра «Усиление». Допустимые значения: от -9999 до 9999 Значение по умолчанию: 0.0 (нет коррекции)
Сетевой адрес прибора	Допустимые значения: 1 — 247 Значение по умолчанию: 1
Скорость обмена	Задает скорость обмена по интерфейсу RS-485. Допустимые значения: 0 — 9600 бод 1 — 14400 бод 2 — 19200 бод 3 — 38400 бод 4 — 57600 бод 5 — 115200 бод 6 — 230400 бод 7 — 460800 бод 8 — 921600 бод Значение по умолчанию: 0
Число бит данных	Допустимые значения: 7,8 Значение по умолчанию: 8
Контроль по чётности	Допустимые значения: 0 — Контроля по четности нет 1 — Осуществляется проверка по нечетному 2 — Осуществляется проверка по четному Значение по умолчанию:0
Число стоп-бит	Допустимые значения:1,2 Значение по умолчанию: 1

Таблица 6.4 Регистры хранения (функции 0х03, 0х06 и 0х16)

Параметр	Адрес	Формат	Длина в словах
Тип датчика	0	uint8_t	1
Коррекция измеренного значения. Усиление	1	float	2
Коррекция измеренного значения. Смещение	3	float	2
Сетевой адрес прибора	5	uint8_t	1
Скорость обмена	6	uint8_t	1
Число бит данных	9	uint8_t	1
Контроль по чётность	7	uint8_t	1
Число стоп-бит	8	uint8_t	

Таблица 6.5 Регистры ввода (Modbus функция 0x04)

Параметр	Адрес	Формат	Длина в словах
Измеренное значение температуры в °C	0	float	2
Слово состояния прибора	2	uint8_t	1
Измеренное значение температуры в °C x 10	3	int16_t	1

7 Восстановление настроек прибора

Прибор не имеет никаких органов управления или средств индикации. Связь с прибором возможна только по интерфейсу RS-485. Поэтому если пользователь забудет сетевые настройки прибора или укажет неправильные, то связь с прибором будет потеряна. Чтобы избежать этого существует универсальный способ связи с прибором, работающий независимо от установленных пользователем настроек интерфейса RS-485. После включения питания прибор в течении одной секунды работает с настройками, указанными в таблице 7.1. После этого прибор переходит в нормальный режим работы согласно заданным пользователем параметрам.

Таблица 7.1 Настройки СОМ-порта для сброса настроек прибора

Параметр	Значение
Адрес прибора	247
Скорость обмена (бит/с)	9600
Число бит данных	8
Число стоп-бит	1
Контроль на чётность/нечётность	отключён

Если в течении первой секунды работы прибора после подачи питания установить флаг «Оставить настройки интерфейса по умолчанию», прибор после секундного интервала не перейдёт к работе на пользовательских настройках интерфейса, а продолжит работать на настройках по умолчанию до выключения питания.

Команда, посылаемая для этого прибору, представляет собой стандартный Modbus-запрос на установку в единицу регистра флагов «Оставить настройки интерфейса по умолчанию» (см. таблицу 6.1). Необходимая для этого посылка Modbus будет выглядеть следующим образом:

№ байта	0	1	2	3	4	5	6	7
Значение	0xF7	0x05	0x00	0x10	0xFF	0x00	0x69	0x99

В случае успешного выполнения команды прибор ответит такой же посылкой.

Для сброса прибора к заводским настройкам, необходимо выполнить следующие шаги:

- 1) Подключить только один прибор к интерфейсу RS-485 компьютера.
- 2) Настроить интерфейс компьютера согласно таблице 7.1.
- 3) Начать посылать команду установки флага «Оставить настройки интерфейса по умолчанию».
- 4) Включить питание прибора, продолжая посылать команду установки флага «Оставить настройки интерфейса по умолчанию».
- 5) Прибор, получив команду в течении первой секунды после включения питания выполнит её, пошлёт ответную посылку и интерфейс прибора продолжит работать на настройках из таблицы 7.1.
- 6) Прекратить посылать команду установки флага «Оставить настройки интерфейса по умолчанию».
- 7) Прочитать/записать необходимые настройки прибора

8) Выключить питание прибора

Программа-конфигуратор позволяет восстановить настройки прибора, практически не вдаваясь в технические подробности процесса, и значительно облегчает процедуру восстановления забытых настроек. Программа-конфигуратор доступна на нашем интернет-сайте www.automatix.ru или сайте интернет-магазина www.kipspb.ru.

8 Схема подключения датчика

Схемы подключения датчиков к преобразователю представлены на рис. 9.1. Частой пунктирной линией обозначен провод, отличающийся по цвету от двух остальных проводов.

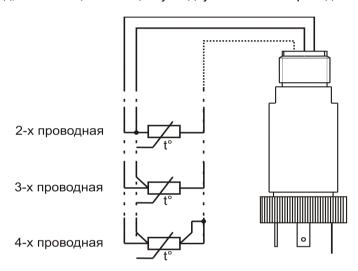


Рис. 9.1 Схема подключения датчика

9 Условия эксплуатации

Температура окружающего воздуха -30...50 °C.

Относительная влажность воздуха до 95% при 35°C.

Атмосферное давление 84...107 кПа.

Напряжение питания: = (12-26) В.

Окружающий воздух не должен содержать токопроводящую пыль, взрывоопасные и агрессивные газы.

Прибор не должен располагаться вблизи источников мощных электрических и магнитных полей (силовые трансформаторы, дроссели, электродвигатели, неэкранированные силовые кабели).

Прибор не должен подвергаться сильной вибрации. Указание мер безопасности

При эксплуатации прибора необходимо соблюдать требования безопасности. предусмотренные «Правила В технической эксплуатации электроустановок потребителей» «Правила техники безопасности при эксплуатации электроустановок», ГОСТ 12.2.007.0, ГОСТ 12.1.019, ГОСТ 22261.

10 Комплектность

В состав комплекта входят:

- преобразователь	1 шт.
- диск с ПО и документацией	1 шт.
- паспорт и инструкция по эксплуатации	1 шт.
- упаковка	1 шт.
- уплотнительный сальник	1 шт.

11 Правила транспортирования и хранения

Прибор транспортируется всеми видами транспорта в крытых транспортных средствах. Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха -50...+50 °C, с соблюдением мер защиты от ударов и вибраций. Условия хранения прибора в транспортной таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные к материалам прибора примеси.

12 Гарантии изготовителя

Изготовитель гарантирует соответствие преобразователя требованиям раздела 3 настоящего паспорта при соблюдении потребителем условий эксплуатации, хранения и транспортирования. Гарантийный срок эксплуатации 2 года.

13 Форма заказа

Прибор выпускается в различных модификациях, поэтому необходимо точно указывать требуемую комплектацию, согласно принятой изготовителем маркировке

В бланке заказа необходимо указать тип датчика.

СПРУТ T-02-RS485-X1-DC24A,

где **X1** – тип датчика:

ТС1 – термосопротивления из таблицы 3.2;

ТС2 – термосопротивления из таблицы 3.3.

14 Свидетельство о приемке	
Преобразователь «СПРУТ T-02-RS48 заводской номер №	5 DC24A» соответствуе
разделам 2 и 3 настоящего паспорта и эксплуатации.	признан годным
Дата выпуска	М.П.
Представитель ОТК	
Дата продажи	

15 Обратная связь

Со всеми вопросами и предложениями обращайтесь по адресу электронной почты support@automatix.ru или по телефонам: (812) 327-32-74, 928-32-74.

Почтовый адрес: 195265 г. Санкт-Петербург, аб.ящик 71.

выставка: г. Санкт-Петербург Офис. склад. метро Мурино), «Девяткино» (пос. ул. Ясная, д. 11.

Программное обеспечение и дополнительная информация могут быть найдены на нашем интернет-сайте www.automatix.ru.